137 research outputs found

    Solvent-free catalytic oxidation of benzyl alcohol over Au-Pd bimetal deposited on TiO2: comparison of Rutile, Brookite, and Anatase

    Get PDF
    TiO2 (P25)-supported Au-Pd bimetal nanoparticles displayed excellent performance in the solvent-free benzyl alcohol catalytic oxidation. However, little research attention has been paid to investigate the effects of TiO2 form on the catalytic activity of Au-Pd/TiO2. In the present research, rutile, brookite, and anatase TiO2 were successfully synthesized and subsequently applied as the carrier to load Au-Pd nanoparticles by the deposition-precipitation method. The experimental results indicated that the benzyl alcohol conversion employing the rutile TiO2-supported Au-Pd catalyst is higher than the conversion of anatase and brookite TiO2-loaded Au-Pd catalysts. However, the Au-Pd/TiO2-rutile displayed the lowest and highest selectivity toward benzaldehyde and toluene, respectively. ICP-AES, XRD, XPS, and TEM were conducted to characterize these catalysts. The corresponding experimental results revealed that the excellent performance of Au-Pd/TiO2-rutile catalyst was attributed to both the smaller Au-Pd nanoparticle size distribution and the higher concentrations of Oα and Pd2+ species on the catalyst surface. In the recycle experiments, the Au-Pd/TiO2-rutile catalyst displayed lower reaction stability compared with the Au-Pd/TiO2-anatase and Au-Pd/TiO2-brookite, which might be due to the coverage of larger amount of aldehyde products on the surface

    Analysis on cushion performance of quartz sand in high-g shock

    Get PDF
    Abstract The cushion protection for light mass electronic instruments in projectile is of vital importance to the normal work of an ammunition system. Quasi-static compression tests were conducted on two kinds of quartz sand with different grain diameters and their energy absorption abilities were analyzed. The cushion effect under high g shock was studied by using air gun. The results of experiments show that the quartz sand material takes in energy by grain breakage and the energy absorption ability in unit volume, the energy absorption ability in unit mass and the ideal energy absorption efficiency all improve with the increase of grain diameter. The cushion efficiency of the coarse quartz sand material with grain diameter of 1.0mm to 5.0mm can reach more than 50% under high g shock. This provides a favorable cushion protection for light mass equipment

    Variability Improvement by Interface Passivation and EOT Scaling of InGaAs Nanowire MOSFETs

    Get PDF
    High-performance InGaAs gate-all-around (GAA) nanowire MOSFETs with channel length (LchL_{ch}) down to 20 nm are fabricated by integrating a higher-k LaAlO3LaAlO_3-based gate-stack with an equivalent oxide thickness of 1.2nm. It is found that inserting an ultrathin (0.5 nm) Al2O3Al_2O_3 interfacial layer between the higher k LaAlO3LaAlO_3 and InGaAs can significantly improve the interface quality and reduce device variation. As a result, a record low subthreshold swing of 63 mV/dec is demonstrated at sub-80-nm LchL_{ch} for the first time, making InGaAs GAA nanowire devices a strong candidate for future low-power transistors.Chemistry and Chemical Biolog

    Loss of work productivity in a warming world: differences between developed and developing countries

    Get PDF
    Comparable estimates of the heat-related work productivity loss (WPL) in different countries over the world are difficult partly due to the lack of exact measures and comparable data for different counties. In this study, we analysed 4363 responses to a global online survey on the WPL during heat waves in 2016. The participants were from both developed and developing countries, facilitating estimates of the heat-related WPL across the world for the year. The heat-related WPL for each country involved was then deduced for increases of 1.5, 2, 3 and 4 °C in the global mean surface temperature under the representative concentration pathway scenarios in climate models. The average heat-related WPL in 2016 was 6.6 days for developing countries and 3.5 days for developed countries. The estimated heat-related WPL was negatively correlated with the gross domestic product per capita. When global surface temperatures increased by 1.5, 2, 3 and 4 °C, the corresponding WPL was 9 (19), 12 (31), 22 (61) and 33 (94) days for developed (developing) countries, quantifying how developing countries are more vulnerable to climate change from a particular point of view. Moreover, the heat-related WPL was unevenly distributed among developing countries. In a 2°C-warmer world, the heat-related WPL would be more than two months in Southeast Asia, the most influenced region. The results are considerable for developing strategy of adaptation especially for developing countries

    A review on modelling methods, tools and service of integrated energy systems in China

    Get PDF
    An integrated energy system (IES) is responsible for aggregating various energy carriers, such as electricity, gas, heating, and cooling, with a focus on integrating these components to provide an efficient, low-carbon, and reliable energy supply. This paper aims to review the modeling methods, tools, and service modes of IES in China to evaluate opportunities for improving current practices. The models reviewed in this paper are classified as demand forecasting or energy system optimization models based on their modeling progress. Additionally, the main components involved in the IES modeling process are presented, and typical domestic tools utilized in the modeling processes are discussed. Finally, based on a review of several demonstration projects of IES, future development directions of IES are summarized as the integration of data-driven and engineering models, improvements in policies and mechanisms, the establishment of regional energy management centers, and the promotion of new energy equipment

    Au-Pd nanoparticles immobilized on TiO2 nanosheet as an active and durable catalyst for solvent-free selective oxidation of benzyl alcohol

    Get PDF
    TiO2 nanocrystals with controlled facets have been extensively investigated due to their excellent photocatalytic performance in sustainable and green energy field. However, the applications in thermal catalysis without applying UV irradiation are comparably less and the identification of their intrinsic roles, especially the different catalytic behaviors of each crystal facet, remains not fully recognized. In this study, bimetallic AuPd nanoparticles supported on anatase TiO2 nanosheets exposing {0 0 1} facets or TiO2 nanospindles exposing {1 0 1} as a catalyst were prepared by sol-immobilization method and used for solvent-free benzyl alcohol oxidation. The experimental results indicated that the exposed facet of the support has a significant effect on the catalytic performance. AuPd/TiO2-001 catalyst exhibited a higher benzyl alcohol conversion than that of the AuPd/TiO2-101. Meanwhile, all the prepared AuPd/TiO2 catalysts were characterized by XRD, ICP-AES, XPS, BET, TEM, and HRTEM. The results revealed that the higher number of oxygen vacancies in TiO2-sheets with the exposed {0 0 1} facets of higher surface energy could be responsible for the observed enhancement in the catalytic performance of benzyl alcohol oxidation. The present study displays that it is plausible to enhance the catalytic performance for the benzyl alcohol oxidation by tailoring the exposed facet of the TiO2 as a catalyst support
    • …
    corecore